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Abstract

Macroparticle tracking is a direct and attractive approach to following the

evolution of a longitudinal phase space distribution. When the particles inter-

act through short range wake fields or when the inter-particle force is included,

calculations of this kind require a large number of macroparticles. However, it

is possible to reduce both the number of macroparticles required and the num-

ber of tracking steps per unit simulated time by employing a simple scaling. It

is demonstrated that the Vlasov equation is unchanged by introduction of the

scaled quantities. It is further shown that under rather general conditions the

speed of calculation improves with the fourth power of the scaling constant.

Two examples comparing scaled and original cases illustrate the effectiveness

of the approach. Limitations to the amount of re-scaling are discussed.
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I. INTRODUCTION

Multiparticle tracking programs have a long history and established utility for modeling

the evolution of the longitudinal phase space distributions for particles in accelerators as

the particles respond to the rf in acceleration or bunch manipulation. The macroparticle

distribution can be used to approximate the evolution of the beam current distribution

or fourier spectrum throughout the process being modeled. Passing from single particle

dynamics to multiparticle dynamics by calculating the beam current every time step and

including the contribution of the fields induced by it to the single particle motion is a direct

extension of the technique which makes a wide range of interesting problems accessible.

However, the question of the number of macroparticles needed or the relevant bandwidth

for quantities calculated in frequency domain requires careful attention, and it is very easy to

generate spectacular spurious instabilities by excessive time steps or an insufficient number

macroparticles. This question is the source and focus of what follows; recent studies of high

brightness injectors and the so-called factory accelerators have given it currency. It will be

shown that modeling which might appear to require of order 106 macroparticles and days of

time on a fast computer can be scaled to the desktop and normal patience.

II. SCALING CONCEPT

The objective of the scaling sought is to allow more rapid calculation of the time evolution

of the energy and rf phase of particles in a synchrotron or storage ring taking into account

the contribution of beam image current, direct interparticle force, etc. In a multiparticle

tracking calculation, the positions of representative macroparticles in an energy-phase plane

are found by iterating a pair of first order difference equations with an iteration step almost

always taken as one period of circulation of particles around the ring. The iteration step

can be fractional or multiple turns, however. The interaction of the particles is calculated

each iteration by an energy increment for each particle arising from the fields generated by
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the total beam current.

A useful approximation for the single turn map is [1]

ϕi,m = ϕi,m−1 +
2πhη

β2
sEs

εi,m−1 (1)

εi,m = εi,m−1 + eV (ϕi,m + φs,m)− eV (φs,m) , (2)

where ϕ is a phase difference between a particle and the synchronous phase φs, likewise ε

represents is the energy difference between a particle and the synchronous energy Es, i labels

particles, and m labels turns. All symbols are defined in Table I.

By inspection of the map parameters it is plausible that the phase space motion can

be accelerated by scaling the phase slip factor η and the potential up by the same factor.

Notice the potential is not necessarily just that from the rf system; the collective potential

produced by the beam current enters identically. A trial comparing the evolution of some

distribution mapped according to eqs. 1 and 2 with that obtained from the map with η and

V multiplied by a scaling factor λ reveals that the distributions, i. e. plots of macroparticle

locations on the energy-phase plane, are identical when the plot for time t in the un-scaled

calculation is compared to time t/λ in the scaled calculation.

The obvious gain is a factor λ−1 in the computing time by speeding up the clock in the

scaled calculation. However, the scaling up of the time means that frequencies associated

with the motion, like the rf frequency for example, have also been scaled up. A consequence

of the frequency scaling is that a resonant potential in the problem, like a higher order cavity

mode for example, must be entered into the calculation with its resonant frequency scaled

up by the same factor. If this is done, the result of scaled and original mappings may be

indistinguishable from one another for a reasonable choice of λ.

Figs. 1 and 2 compare the collective potential vs. rf phase for an h=1 bunch with 4 · 1013

protons in a calculation scaled by λ = 2 with an un-scaled modeling. The storage ring

parameters used in this and a later example are given in Table II. The parameters are

similar to those of the Los Alamos PSR with the addition of a resonance (HOM) 1% above

the third harmonic of the the beam circulation frequency f◦; it is the only source of collective
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potential included in this example. Fig. 1 is the HOM voltage after 4 · 104 turns (0.014 s)

of tracking; the curve with a dash-dot representation is the longitudinal charge distribution

with the same number of bins used for the potential. Fig. 2 shows the same quantities for

the scaled model after 2 ·104 turns. Many other features of the distribution can be compared

including the time evolution of moments and the phase plane plots, which appear nearly

identical in an overlay comparison. Note the factor of two scale difference on the potential

axis in the Fig. 1 and Fig. 2. The scaled charge distribution looks slightly smoother because

of faster mixing between adjacent bins in the scaled case.

When broadband impedance or the direct interparticle forces (variously called space

charge or perfectly conducting wall forces) are included, the consequences of the frequency

scaling are different and very advantageous. If it has been concluded that the effects of

beam pipe impedance must be covered over some particular frequency bandwidth, or, more

or less equivalently wake fields down to some minimum range, it will be necessary to bin the

charge distribution into bins sufficiently narrow to reflect detail in the distribution to that

scale. It is easiest to formulate the requirement in the frequency domain: the bandwidth of

interest must be spanned by fourier components of the beam current. If beam circulation

frequency is f◦ and the required bandwidth is W , the charge distribution must be divided

into 2W/f◦ bins for the finite transform. However, in the scaled system f◦ is λ times higher;

the number of bins can be reduced by a factor λ−1. The number of harmonics is reduced,

but the frequency range covered is the same. What has been sacrificed is sensitivity to

features in the frequency dependence of the longitudinal impedance Z‖ on the scale of f◦.

For example, the space charge term in frequency domain is

Zsc

n
= −i Z◦g

2βγ2
, (3)

where n is the harmonic number, Z◦ =
√
µ◦/ε◦ = 377Ω, γ = E/m◦c2, and g is the geometric

factor for the beam tube. The evaluation of this term is not compromised by more widely

spaced frequency sampling. For wideband impedances is general, there will be little loss in

information for reasonable choices of λ.
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What has been gained is the opportunity to reduce the the number of macroparticles

required for a given level of numerical noise in the mapping. It has been shown that when

a three point difference formula for the derivative of the linear charge density is used in

calculating the space charge force in time domain, the number of macroparticles can be

reduced by a factor λ−3 when the number of bins is reduced by the factor λ−1. [2] An

argument based on sampling in the frequency domain shows that more generally this result

applies to any source of longitudinal impedance with a frequency dependence featureless

on the scale of ∆f ∼ few × f◦. [3] Thus the net effect of scaling by a factor λ can be an

improvement in the speed of the calculation on the order of λ4 for most applications.

III. FORMAL ANALYSIS

The discussion based on ad hoc scaling of the mapping was not offered as proof that the

scaling is valid, rather that it is plausible. Here it is demonstrated that the Vlasov equation

for the original problem is unchanged by introducing the scaled variables and parameters.

Symbols used in the following are defined in Table I.

Consider a bunch for which the small amplitude synchrotron oscillation frequency ωs =

ω◦Qs. The steady state collective voltage experienced by a particle with phase φ is

Vcoll(φ) =
eω◦
2π

N∑
k=1

∞ ′∑
p=−∞

eipφ/h{Z(pω◦)− (4)

iω◦τ̂k
2

[(p+Qs)Z(pω◦ + ωs)e
i(ψk+Qsφ/h) +

(p−Qs)Z(pω◦ − ωs)e−i(ψk+Qsφ/h)]} ,

where the sum over k is taken over all particles. The single particle equations of motion in

canonical energy-time variables are

dεj
dt

=
heω2

◦
2π

[Vrf cosφs + V ′coll(φs)]τj (5)

dτj
dt

= − η

β2E◦
εj . (6)
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The rf potential is sinusoidal with amplitude Vrf . The energy increment eVrf sin φs keeps

a particle with phase φs synchronous as the guide field is changed or energy is lost to the

real part of the longitudinal impedance. The total hamiltonian for the motion of all of the

particles is

H = −
N∑
k=1

{ η

2β2E◦
ε2
k +

ehω2
◦

4π
[Vrf cosφs + V ′coll(φs)]τ

2
k} . (7)

The time evolution of the phase space distribution for the multiparticle system is de-

scribed by the Vlasov equation

dΨ

dt
=
∂Ψ

∂t
+
∂Ψ

∂τ

dτ

dt
+
∂Ψ

∂ε

dε

dt
= 0 , (8)

where Ψ(ε, τ ; t) is the particle distribution function which depends on t only implicitly

through ε and τ . It expresses Liouville’s theorem on conservation phase space density and

is valid in the absence of diffusion or external damping of the motion.

The scaling introduced into the map in Sec. II creates an apparently new physical system

which will be denoted as the primed system; it is related to the original system by

η′ = λη (9)

V ′ = λV

t′ = t/λ .

However, if the two systems are physically equivalent, then Ψ′|λt′ = Ψ|t. By direct substitu-

tion one finds

H ′ = λH . (10)

The Vlasov equation in the primed system is

∂Ψ′

∂t′
+
∂Ψ′

∂τ ′
dτ ′

dt′
+
∂Ψ′

∂ε′
dε′

dt′
= 0 , (11)

which leads immediately to

λ
∂Ψ

∂t
+ λ

∂Ψ

∂τ

dτ

dt
+ λ

∂Ψ

∂ε

dε

dt
= 0 . (12)

Because the scaling constant λ 6= 0 appears to the same power in every term of the equation,

the solution is independent of the scaling.
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IV. COMPARISON OF SCALED AND UN-SCALED TRACKING

In Sec. II there is a comparison of a scaled and an un-scaled tracking with the collective

potential generated by an h=3 HOM and 4 · 1013 protons in the ring. A more realistic case

is to add the space charge force to this example. In the earlier example 8000 macroparticles

were quite sufficient because the HOM resonance is at a rather low frequency. When the

space charge force is evaluated, the gradient of the charge distribution is calculated; there

must be enough macroparticles to produce a smooth distribution. An insufficient number

results in large local fluctuation of the force and spurious breakup of the beam into small

clumps. In Figs. 3 and 4 is shown the evolution of the rms energy spread of the beam as

the charge is raised from zero to a final value of 2 · 1013 protons over .012 seconds. The

un-scaled example in Fig. 3 used 2 · 106 macroparticles and took 32 hours of processor time

on a Sun Ultra 2. The macroparticle number was selected arbitrarily and the final charge

was adjusted to avoid spurious breakup. The plot in Fig. 4 was generated from tracking

with the scaling λ = 2 and used 2.5 · 105 macroparticles; it required 1.9 hours on the same

computer, just a little better than λ4 times faster. It may not always be possible to scale

this much, although in some cases even more may be possible.

V. UTILITY

If the scaling factor λ can be significantly larger than 1 without significantly reducing the

accuracy of the result, much time can be saved in macroparticle modeling. One limitation

on the choice of λ has been discussed above, viz., that the spacing of harmonics of the

circulation angular frequency ω◦ should not be greater than the scale of important features of

the frequency dependence of the longitudinal impedance Z‖(ω). Returning to the difference

equations eqs. 1 and 2, one sees that, in the absence of any collective potential, the scaling

by integral or 1/integer λ is equivalent to a multi-turn or fractional-turn map respectively.

This indicates that an additional feature of the scaling with λ > 1 is the introduction of
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an artificial increase in the effective time step. This artificial discretization error leads to

distortion of the macroparticle trajectories that can be very apparent in extreme cases. The

parameter to control is the synchrotron oscillation phase advance between energy increments.

When this is below 0.01π or so, the calculation should be at least qualitatively reasonable.

Another condition, which is generally the same as the limitation on synchrotron oscillation

phase advance per iteration is that rf phase slip per iteration should be small with respect

to a bunch length, and energy increment per iteration should be small with respect to the

beam energy spread. The scaling described is so simple to implement and so innocuous

in typical applications that it seems reasonable to employ it when calculation time for the

un-scaled case is more than a few minutes. The precaution of considering the granularity

of the sampling of Z‖(ω) and the adjustment of the frequency of any narrow resonances

requires forethought, but the test for the appropriateness of the iteration step can easily be

an automatic check in the modeling code.

The conceptual discussion above has used mostly a frequency domain description for

simplicity. The two examples shown, however, are pure time domain calculations using

a slightly modified version of the ESME tracking code. [4] The developmental version of

ESME now incorporates λ scaling as an option, but its compatability with all existing

features, especially frequency domain options, has not been verified. A public version is

planned when experience has established internal consistency, robustness, and ease of use.
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TABLES

TABLE I. Definition of frequently used symbols

Symbol Meaning

φ rf phase

φs synchronous phase

ϕi difference between particle phase and φs

i, j, or k index for particles

m index for turns

h rf harmonic number

e elementary particle charge (> 0)

f frequency

Es synchronous energy

β relativistic velocity v/c

γ relativistic energy Es/m◦c2

γT γ of transition energy in synchrotron

η phase slip factor (γ−2
T
− γ−2)

V total potential

Vrf peak rf voltage

Vcoll collective potential

λ dimensionless real scaling constant

Z longitudinal impedance

f◦ beam circulation frequency

ω◦ angular frequency of beam circulation

ωs angular frequency of small amplitude synchrotron oscillations

Qs synchrotron tune

εj difference between energy of j-th particle and Es

τj time difference ϕj/hω◦
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p index for fourier harmonics

τ̂k amplitude of time excursion in synchrotron oscillation

ψk synchrotron oscillation phase of a particle

N number of particles in beam

Ψ particle density in phase space

TABLE II. Storage ring parameters used in tracking examples

Parameter Symbol Value Units

Circumference C 90.261 m

momentum p 1459.7 Mev/c

transition energy/m◦c2 γ
T

3.08

slip factor γ−2
T
− γ−2 η .18694

rf peak voltage Vrf 5 kV

rf harmonic h 1

beam circulation frequency f◦ 2.7940 MHz

HOM frequency fres 8.4658 MHz

HOM impedance at resonance Rsh 300 Ohm

HOM Q Q 100
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FIGURES

FIG. 1. Voltage vs. rf phase (histogram) produced by an h=3 HOM resonance in the ring whose

parameters are given in Table I, after 4 · 104 turns (0.014 s)

The beam intensity is 4 ·1013 protons. The longitudinal charge distribution is shown with the same

binning by the (— ·) curve.

FIG. 2. Conditions same as Fig. 1 scaled with λ = 2 after 2 · 104 iterations

The voltage scale is V ′ = λV .
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FIG. 3. The rms energy spread vs. time in the ring specified in Table I for a beam intensity of

2 · 1013 protons including both an h=3 HOM and the perfectly conducting wall space charge force

FIG. 4. The same conditions used for Fig. 3 except scaled with λ = 2

Note that the time scale is t′ = t/λ, one half of that in Fig. 3.
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